The Human dsRNA binding protein PACT is unable to functionally substitute for the Drosophila dsRNA binding protein R2D2
نویسندگان
چکیده
The dsRNA binding protein (dsRBP) PACT was first described as an activator of the dsRNA dependent protein kinase PKR in response to stress signals. Additionally, it has been identified as a component of the small RNA processing pathway. A role for PACT in this pathway represents an important interplay between two modes of post-transcriptional gene regulation. The function of PACT in this context is poorly understood. Thus, additional approaches are required to clarify the mechanism by which PACT functions. In this study, the genetic utility of Drosophila melanogaster was employed to identify dsRNA-binding proteins that are functionally orthologous to PACT. Transgenic Drosophila expressing human PACT were generated to determine whether PACT is capable of functionally substituting for the Drosophila dsRBP R2D2, which has a well-defined role in small RNA biogenesis. Results presented here indicate that PACT is unable to substitute for R2D2 at the whole organism level.
منابع مشابه
The Human dsRNA binding protein PACT is unable to functionally substitute for the dsRNA binding protein
The dsRNA binding protein (dsRBP) PACT was first described as an activator of the dsRNA dependent protein kinase PKR in response to stress signals. Additionally, it has been identified as a component of the small RNA processing pathway. A role for PACT in this pathway represents an important interplay between two modes of post-transcriptional gene regulation. The function of PACT in this contex...
متن کاملShort Interfering RNA Strand Selection Is Independent of dsRNA Processing Polarity during RNAi in Drosophila
Short interfering RNAs (siRNAs) guide mRNA cleavage during RNA interference (RNAi). Only one siRNA strand assembles into the RNA-induced silencing complex (RISC), with preference given to the strand whose 5' terminus has lower base-pairing stability. In Drosophila, Dcr-2/R2D2 processes siRNAs from longer double-stranded RNAs (dsRNAs) and also nucleates RISC assembly, suggesting that nascent siR...
متن کاملDifferential roles of human Dicer-binding proteins TRBP and PACT in small RNA processing
During RNA interference and related gene regulatory pathways, the endonuclease Dicer cleaves precursor RNA molecules to produce microRNAs (miRNAs) and short interfering RNAs (siRNAs). Human cells encode a single Dicer enzyme that can associate with two different double-stranded RNA (dsRNA)-binding proteins, protein activator of PKR (PACT) and trans-activation response RNA-binding protein (TRBP)...
متن کاملDicer-2 and R2D2 coordinately bind siRNA to promote assembly of the siRISC complexes.
In Drosophila melanogaster, the Dicer-2/R2D2 complex initiates RNA interference (RNAi) by processing long double-stranded RNA (dsRNA) into small interfering RNA (siRNA). Recent biochemical studies suggest that the Dcr-2/R2D2 complex also facilitates incorporation of siRNA into the RNA-induced silencing complex (siRISC). Here we present genetic evidence that R2D2 and Dcr-2 are both required for ...
متن کاملMolecular basis for PKR activation by PACT or dsRNA.
The mammalian protein kinase PKR is a critical component of the innate immune response against virus infection. Its cellular actions are mediated by modulating cell signaling and translational regulation. To be enzymatically active, latent PKR needs to be activated by binding to one of its activators, dsRNA or PACT protein. Although the structures of the N-terminal dsRNA-binding domain and the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 2 شماره
صفحات -
تاریخ انتشار 2013